Optimal Monitor Placement for Node Failure Localization in Communication Networks
نویسندگان
چکیده
We investigate the problem of placing monitors to localize node failures in a communication network from binary states (normal/failed) of end-to-end paths, under the assumption that a path is in normal state if and only if it contains no failed nodes. To uniquely localize failed nodes, the measurement paths must show different symptoms (path states) under different failure events. Our goal is to deploy the minimum set of monitors to satisfy this condition for a given probing mechanism. We consider three families of probing mechanisms, according to whether measurement paths are (i) arbitrarily controllable, (ii) controllable but cycle-free, or (iii) uncontrollable (i.e., determined by the default routing protocol). We first establish theoretical conditions that characterize network-wide failure identifiability through a per-node identifiability measure that can be efficiently evaluated for the above three probing mechanisms. Leveraging these results, we develop a generic monitor placement algorithm, applicable under any probing mechanism, that incrementally selects monitors to optimize the per-node measure. The proposed algorithm is shown to be optimal for probing mechanism (i), and provides upper and lower bounds on the minimum number of monitors required by the other probing mechanisms. In the special case of single-node failures, we develop an improved monitor placement algorithm that is optimal for probing mechanism (ii) and has linear time complexity. Using these algorithms, we study the impact of the probing mechanism on the number of monitors required for uniquely localizing node failures. Our results based on real network topologies show that although more complicated to implement, probing mechanisms that allow monitors to control measurement paths substantially reduce the required number of monitors.
منابع مشابه
Quasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملA Rssi Based Localization Algorithm for WSN Using a Mobile Anchor Node
Wireless sensor networks attracting a great deal of research interest. Accurate localization of sensor nodes is a strong requirement in a wide area of applications. In recent years, several techniques have been proposed for localization in wireless sensor networks. In this paper we present a localization scheme with using only one mobile anchor station and received signal strength indicator tec...
متن کاملOptimal Node Placement in Wireless Underground Sensor Networks
Wireless Underground Sensor Networks (WUSNs) are active and emerging area of application of Wireless Sensor Networks (WSNs), whereby sensor nodes are located under the ground environment. The communication between the nodes is done underground, with the aim of sensing events to transmit the sensed events to the sink, which is normally in the terrestrial environment. The most challenging issue i...
متن کاملFuzzy based efficient drone base stations (DBSs) placement in the 5G cellular network
Currently, cellular networks are one of the essential communication methods for people. Providing proper coverage for the users and also offering high-quality services to them are two of the most important issues of concern in cellular networks. The fifth-generation cellular communication networks can provide higher data transmission rates, which lead to a higher quality of service but this hig...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کامل